

A novel, natural anti-microbial product for use as an agricultural bactericide and fungicide

Willem Ravensberg *R&D Microbials Koppert Biological Systems Berkel & Rodenrijs, the Netherlands*

1st Annual Biocontrol Industry Meeting, October 23-24, 2006, Lucerne, Switzerland

Introduction to the Lactoperoxidasesystem

- Koppert's LP-system
- How does LP work?
- LP as a fungicide
- LP as a bactericide
- LP against viruses
- Compatibility
- Conclusions

What is the Lactoperoxidase system?

- Occurs in animals and humans
- Important non-immune defence system
- Active system in milk, saliva, tears, etc.
- Used in food products and oral care products
- Koppert and DMV/Campina have developed it as a natural fungicide/bactericide

DMV International The ingredients of success

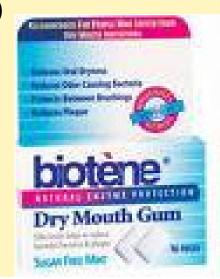
What is the LP system?

- Natural system based on:
 - 1 enzyme + 2 substrate components: lactoperoxidase, SCN⁻ and H_2O_2
- Based on the formation of reactive oxygen species that inhibit or kill bacteria
- FAO: milk preservation: addition of SCN⁻ and H₂O₂

Global Lactoperoxidase Programme MANUAL ON THE USE OF THE LP-SYSTEM IN MILK HANDLING AND PRESERVATION

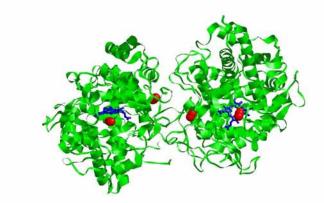
COLLECTION POINT

Food and Agriculture Organization of the United Nations


MILK

LP in oral care products

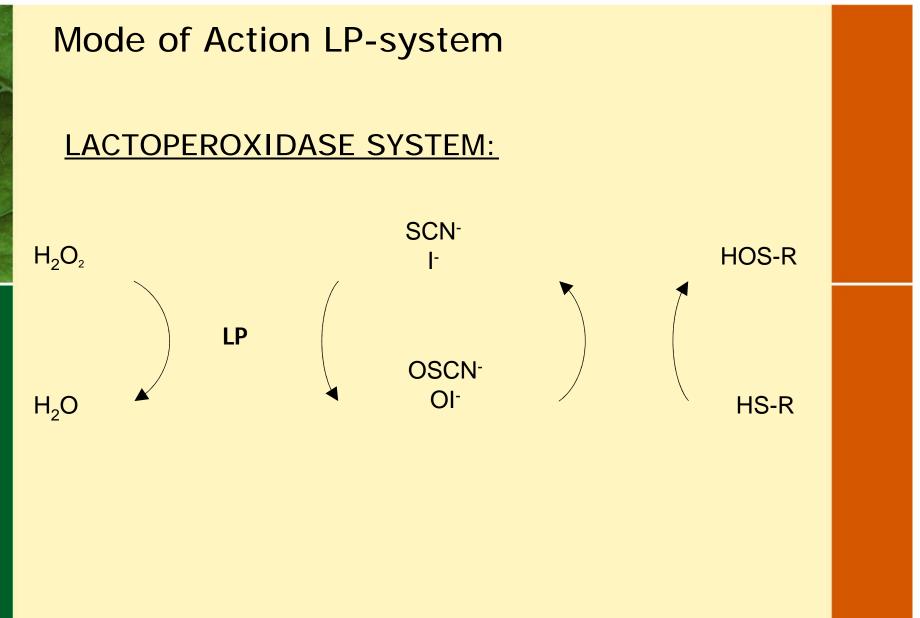
- •Toothpaste (Zendium, Biotene)
- •Chewing gum (Biotene, Bio-Xtra)
- •Mouth rinses (Oralbalance, Biotene)


• Introduction to the Lactoperoxidase-system

- Koppert's LP-system
- How does LP work?
- LP as a fungicide
- LP as a bactericide
- LP against viruses
- Compatibility
- Conclusions

"Koppert's" LP system?

- System based on:
 - 2 enzymes + 3 substrate components
 - adjuvant based on a vegetable oil
- Based on the formation of reactive oxygen species that inactivate proteins in micro-organisms → +



• Introduction to the Lactoperoxidase-system

- Koppert's LP-system
- How does LP work?
- LP as a fungicide
- LP as a bactericide
- LP against viruses
- Compatibility
- Conclusions

Mode of action

- Oxidation of sulfhydryl groups in proteins
- Membrane effects
- Active transports of amino acids and sugars disturbed
- Glycolytic enzymes inhibited
- Other metabolic functions disturbed
 → cell death

Activity (1)

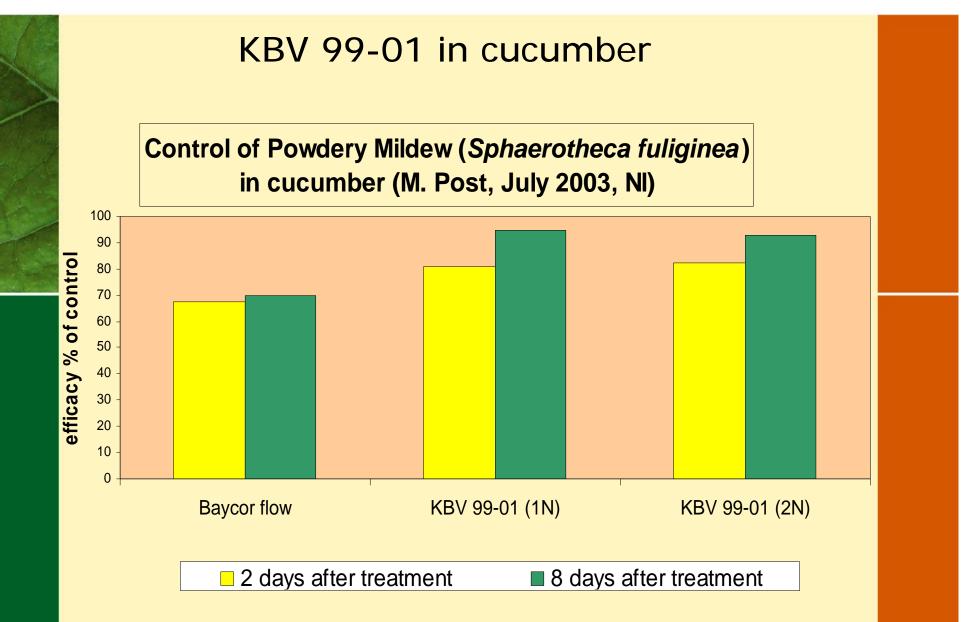
- Activity based on contact
- Curative action
- Activity not translaminar nor systemic
- No preventive effect
- No residual effect
- Only active in water phase High Volume spray
- not dependent on temperature and relative humidity

Activity (2)

- Activity on
 - fungi
 - yeast
 - bacteria
 - viruses
 - mycoplasma's
- Kills spores, cells, mycelium
- No resistance development possible due to multiple-site activity

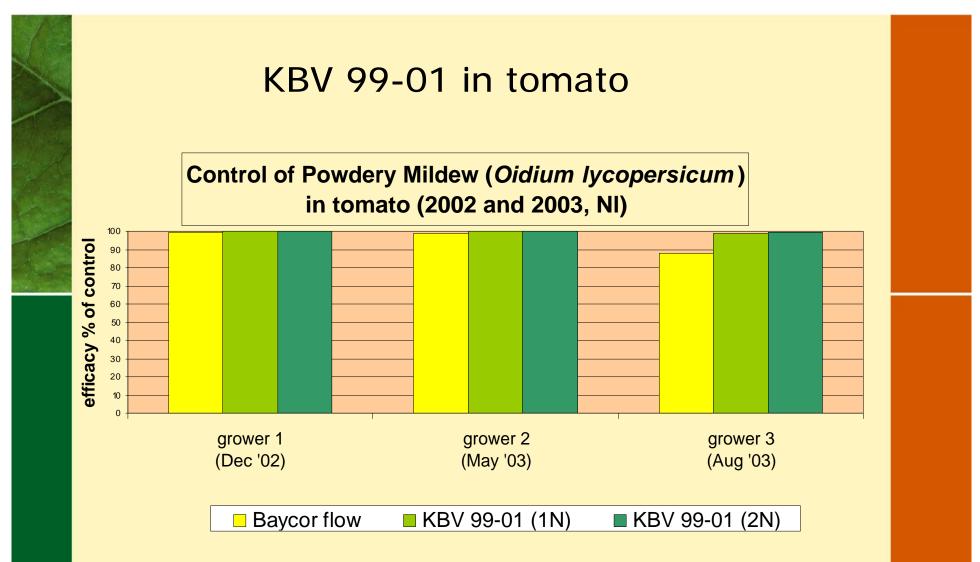
• Introduction to the Lactoperoxidase-system

- Koppert's LP-system
- How does LP work?
- LP as a fungicide
- LP as a bactericide
- LP against viruses
- Compatibility
- Conclusions



Research

- Target 1: powdery mildew(s)
- Protected crops worldwide
- Research model:
 - cucumber/Sphaerotheca
- Composition of active system
- Formulation, incl adjuvant
- Product developed



Visible effect in cucumber

Visible effect in tomato

Research

- Target 2: Fusarium oxysporum
- Bulbs
- Research model: tulip/ "zuur"
- Other bulbs and diseases in research

• Introduction to the Lactoperoxidase-system

- Koppert's LP-system
- How does LP work?
- LP as a fungicide
- LP as a bactericide
- LP against viruses
- Compatibility
- Conclusions

Research

- Target: bacterial diseases
- Lab trials on Erwinia, Clavibacter, Pseudomonas, Xanthomonas spp. positive
- Further research needed

Research

- Apple: fire blight
- Lab trials positive

- Field trial: result moderate
- Further research: formulation and application strategy

Introduction to the Lactoperoxidase-system

- Koppert's LP-system
- How does LP work?
- LP as a fungicide
- LP as a bactericide
- LP against viruses
- Compatibility
- Conclusions

LP against viruses

- Medical uses reported
- In vitro trials
 - TMV
 - PepMV

LP against viruses

Results:

• TMV \rightarrow no effect

- PepMV → variable results
 → up to 95% effect
- More research needed

Patent

- Composition and application patented
- For use as an agricultural fungicide / bactericide

• Introduction to the Lactoperoxidase-system

- Koppert's LP-system
- How does LP work?
- LP as a fungicide
- LP as a bactericide
- LP against viruses
- Compatibility
- Conclusions

Compatibility Enzicur with natural enemies

Natural enemy	Life stage	Direct / residue	Corrected mortality (%)	IOBC category
Amblyseius cucumeris	ŶŶ	Residue	15	1
Amblyseius swirskii		Residue Direct	17 14	1
Phytoseiulus persimilis	Eggs ♀♀	Residue	22	1
Typhlodromus pyri	Protonymphs	Residue	22	1
	Reproduction reduction	Residue	23	1
Aphidius colemani	♀♀ Mummies	Residue Direct	9 7	1
Encarsia formosa		Residue	56	3
Eretmocerus mundus	\$ \$	Residue	20	1
Macrolophus caliginosus	Nymphs (L2)	Residue Direct	0 15	1
Orius laevigatius	Nymphs (L1)	Direct	60	3
	Nymphs (L2-3)	Residue	0	1
	Reproduction reduction	Residue	0	1
Apis mellifera	Workers	Oral Contact	0 0	1 1

Compatibility Enzicur with pesticides

Insecticides	Commercial name	Fungicides	Commercial name	
Abamectine	Vertimec	Azoxystrobin	Ortiva	
Bacillus thuringiensis	Dipel	Bitertanol	Baycor	
Cyromazin	Trigard	Captan	Captan	
Imidacloprid	Admire	Chloorthalovit + prochloraz	Allure	
Pirimicarb	Pirimoz	Imazalit	Fungaflor	
Pymetrozin	Plenem	Bicarbonate	Milstop	
Pyridaben	Asepta Carex	Triflumizole	Rocket	
Pyriproxifen	Admiral			
Spiromesfen	Oberon			
Teflubenzaron	Nomoet			
Thiacloprid	Calypso			
Verticillium lecanii	Mycotal	Sulphur Thiophanate-methyl	Thiovit Topsin-M	

• Introduction to the Lactoperoxidase-system

- Koppert's LP-system
- How does LP work?
- LP as a fungicide
- LP as a bactericide
- LP against viruses
- Compatibility
- Conclusions

Advantages of LP system

- A unique natural product
- No resistance
- Safe to humans, plants, animals and the environment
- Safe to natural enemies and bumblebees
- Fits in Integrated Pest Management
- Fits in organic agriculture

Conclusions

- A new type of fungicide and bactericide
- New mode of action
- Contact activity
- Easy to use
- Potentially for a broad range of diseases and applications
- Contact: wravensberg@koppert.nl

Thank you for your attention! www.koppert.com info@koppert.nl

Koppert Biological Systems Koppert takes you further, naturally